Approximation by Continued Fractions
نویسندگان
چکیده
منابع مشابه
Exponents of Diophantine Approximation and Sturmian Continued Fractions
– Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n (ξ) and w * n (ξ) defined by Mahler and Koksma. We calculate their six values when n = 2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we...
متن کاملContinued fractions with low complexity: Transcendence measures and quadratic approximation
We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w ∗ 2 .
متن کاملQuadratic approximation to automatic continued fractions Sur l’approximation quadratique des fractions continues automatiques
We study the sets of values taken by the exponents of quadratic approximation w2 and w ∗ 2 evaluated at real numbers whose sequence of partial quotients is generated by a finite automaton. Among other results, we show that these sets contain every sufficiently large rational number and also some transcendental numbers. Résumé. Nous étudions les ensembles des valeurs prises par les exposants d’a...
متن کاملEstimation of polynomial roots by continued fractions
One of the ways to describe dynamical characteristics of the system is the s-transfer function, which belongs to the class of the so-called external descriptions and from the mathematical point of view it represents a rational function. Decomposition into the partial fractions (sum of exponential functions in the time domain) is based on the knowledge of the roots of the polynomial defined by t...
متن کاملGeneralized Continued Logarithms and Related Continued Fractions
We study continued logarithms as introduced by Bill Gosper and studied by J. Borwein et. al.. After providing an overview of the type I and type II generalizations of binary continued logarithms introduced by Borwein et. al., we focus on a new generalization to an arbitrary integer base b. We show that all of our so-called type III continued logarithms converge and all rational numbers have fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1974
ISSN: 0002-9939
DOI: 10.2307/2039952